Chemical elements
  Sulphur
    Isotopes
    Energy
    Extraction
    Refining
    Applications
    Allotropy
    Crystalline
    Amorphous Sulphur
    Colloidal Sulphur
    Physical Properties
    Chemical Properties
    Detection
    Estimation
    Compounds
      Hydrogen Sulphide
      Metal Polysulphides
      Hydrogen Polysulphides
      Hydrogen Pentasulphide
      Hydrogen Trisulphide
      Hydrogen Disulphide
      Sulphur Monofluoride
      Sulphur Tetrafluoride
      Sulphur Hexafluoride
      Sulphur Monochloride
      Sulphur Dichloride
      Sulphur Tetrachloride
      Sulphur Monobromide
      Thionyl Fluoride
      Sulphuryl Fluoride
      Fluorosulphonic Acid
      Thionyl Chloride
      Sulphuryl Chloride
      Sulphur Oxytetrachloride
      Pyrosulphuryl Chloride
      Chlorosulphonic Acid
      Thionyl Bromide
      Sodium Sulphoxylate
      Sulphur Dioxide
      Sulphurous Acid
      Sulphites
      Sulphur Trioxide
      Pyrosulphuric Acid
      Pyrosulphates
      Sulphuric Acid
      Persulphuric Anhydride
      Persulphuric Acid or Perdisulphuric Acid
      Perdisulphates
      Permonosulphuric Acid
      Amidopermonosulphuric Acid
      Thiosulphuric Acid
      Thiosulphates
      Polythionic Acids
      Dithionic Acid
      Trithionic Acid
      Trithionates
      Tetrathionic Acid
      Tetrathionates
      Pentathionic Acid
      Pentathionates
      Wackenroders Solution
      Hexathionic Acid
      Polythionic Acids
      Sulphur Sesquioxide
      Hydrosulphurous Acid
      Hydrosulphites
      Nitrogen Sulphide
      Nitrogen Persulphide
      Nitrogen Pentasulphide
      Sulphammonium
      Hexasulphamide
      Nitrogen Chlorosulphide
      Trithiazyl Chloride
      Thiotrithiazyl Chloride
      Dithiotetrathiazyl Chloride
      Nitrogen Bromosulphide
      Thiotrithiazyl Bromide
      Thiotrithiazyl Iodide
      Thiotrithiazyl Nitrate
      Thiotrithiazyl Hydrogen Sulphate
      Thiotrithiazyl Thiocyanate
      Thionylamide
      Sulphamide
      Imidodisulphamide
      Sulphimide
      Sulphonic Acids
      Amidosulphonic Acid
      Imidosulphonic Acid
      Nitrilosulphonic Acid
      Hydroxylamine-monosulphonic Acid
      Nitrososulphonic Acid
      Hydroxylamine-disulphonic Acid
      Hydroxylamine-isodisulphonic Acid
      Hydroxylamine-trisulphonic Acid
      Dihydroxylamidosulphonic Acid
      Sulphazinic Acid
      Sulphazotinic Acid
      Dehydrosulphazotinic Acid
      Nitrosulphonic Acid
      Nitrosulphonyl Chloride
      Nitrosulphonic Anhydride
      Nitrosulphuric Acid
      Nitrosodisulphonic Acid
      Sulphonitronic Acid
      Sulphates of Hydroxylamine
      Hydroxylamine Dithionate
      Hydrazine Dithionate
      Hydrazine Amidosulphonate
      Carbon Subsulphide
      Carbon Monosulphide
      Carbon Disulphide
      Thioformaldehyde
      Thiocarbonic Acid
      Ammonium thiocarbonate
      Thiolcarbonic Acid
      Xanthic Acid
      Perthiocarbonic Acid
      Sodium perthiocarbonate
      Carbonyl Sulphide
      Thiocarbonyl Chloride
      Thiocarbonyl Tetrachloride or
      Carbon Hexachlorosulphide
      Trichloromethyl Disulphide
      Thiocarbonyl Sulphochloride
      Carbon Bromosulphide
      Amino-derivatives of Thiocarbonic Acid
      Dithiocarbamic Acid
      Thiocarbamide
      Azidodithiocarbonic Acid
      Thiocyanogen
      Cyanogen Monosulphide
      Cyanogen Trisulphide
      Sulphur Thiocyanate
      Disulphur Dithiocyanate
      Thiocyanic Acid
      Thiocyanates
      Dithiocyanic Acid
      Trithiocyanuric Acid
      Perthiocyanic Acid
      Perthiocyanogen
      Sulphates

Nitrogen Sulphide, N4S4





Preparation

Nitrogen sulphide may be prepared by the action of dry ammonia on "sulphur dichloride" dissolved in either carbon disulphide or benzene:

6SCl2 + 16NH3 = N4S4 + 2S + 12NH4Cl.

The ammonium chloride separates out in flakes, the solution becoming orange-red in colour. Since it is less soluble in carbon disulphide than sulphur, the nitrogen sulphide may be extracted from the product by fractional crystallisation from that solvent.

When ammonia and sulphur monochloride, S2Cl2, each in ice-cold chloroform solution, are mixed, the main course of the reaction is:

6S2Cl2 + 16NH3 = N4S4 + 8S + 12NH4Cl.

After the sulphide N4S4 has been precipitated by the addition of alcohol, the mother-liquor on concentration yields nitrogen pentasulphide, N2S5, and also hexasulphamide, S6NH2.

Sulphur reacts with liquid ammonia according to the equation:

10S + 4NH3 = N4S4 + 6H2S.

The hydrogen sulphide may be removed as silver sulphide, whilst the nitrogen sulphide in the filtrate can be isolated by extraction with carbon disulphide.


Properties

Nitrogen sulphide forms orange-coloured translucent monoclinic crystals with flat lustrous surfaces, a:b:c = 0.8806:1:0.8430; β = 89°20'. It has a density of 2.2, and melts at 179° C., but the melting-point is considerably lowered by the presence of free sulphur. Sublimation occurs near the melting-point, and as the temperature rises the substance becomes highly explosive. It also detonates violently when struck. When heated in a vacuum, nitrogen sulphide sublimes without decomposition, but when sublimed in a vacuum over silver gauze at 360° C., the sulphide is decomposed, the sulphur combining with the silver. Burt noticed that, in addition to the evolution of nitrogen and the formation of silver sulphide due to the action of the silver gauze, a blue sulphide was also obtained having the same empirical formula as the yellow sulphide, thus furnishing an example of inorganic polymerism.

Nitrogen sulphide is only sparingly soluble in alcohol, ether, wood spirit and turpentine; it is hydrolysed by water or moist air with formation of ammonium thiosulphate, ammonium trithionate and ammonia:

2N4S4 + 15H2O = (NH4)2S2O3 + 2(NH4)2S3O6 + 2NH3.

With hot water the reaction is violent.

With the alkalis the corresponding sulphite, thiosulphate and ammonia are formed:

N4S4 + 6KOH + 8H2O = 2K2SO3 + K2S2O3 + 4NH3.

Dry ammonia has no action, but the sulphide dissolves in liquid anhydrous ammonia at -40° C., yielding a red solution. After evaporation of the ammonia an orange or brown powder remains containing up to two molecules of ammonia, but this powder dissociates slowly even at ordinary temperatures.

Solutions of metallic iodides in anhydrous ammonia form precipitates with nitrogen sulphide in ammoniacal solution. Lead iodide thus forms the compound lead dithiodi-imide, PbN2S2.NH3, which crystallises in olive-green prisms, turning orange on exposure to the air. Hydrochloric acid reacts quantitatively with this lead compound according to the equation:

PbN2S2.NH3 + 6HCl = PbCl2 + 3NH3 + 2S + 2Cl2.

Dry liquid hydrogen sulphide reacts in accordance with the equation:

PbN2S2.NH3 + 3H2S = PbS + 4S + 3NH3.

Although prepared in a similar manner to the lead compound, the product formed with mercury iodide contains one atom less of sulphur per molecule, thus, mercury thiodi-imide, HgN2S.NH3.

Ruff and Geisel assume that the compound of nitrogen sulphide with ammonia dissociates in anhydrous ammonia solution forming (a), , and (6), S:S(NH)2, of which the former yields an insoluble mercuric salt, , and the latter an insoluble lead salt, . Vosnessenski formulates the mercury salt as .

Under similar conditions the cyanides of potassium, magnesium and aluminium form the corresponding thiocyanates. There are indications that the sulphur nitride reacts with ammonium sulphide in the solution to give sulphur, which then interacts with the cyanide:

N4S4 + 6(NH4)2S = 16NH3 + 10S.

Silver and mercuric cyanides form thiocyanates, but considerable amounts of sulphides are also precipitated.

Heated to 120° C. in a closed platinum vessel, hydrogen fluoride and nitrogen sulphide unite to form a red liquid, which readily decomposes into its constituents. In the presence of traces of moisture, thionyl fluoride is formed. Dry hydrogen chloride reacts with nitrogen sulphide according to the equation:

N4S4 + 12HCl = 4NH3 + 4S + 6Cl2.

The sulphide, dissolved in benzene or alcohol, reacts with hydrogen sulphide forming ammonium polysulphide or ammonium thiosulphate, respectively.

Many salts are capable of forming additive products with nitrogen sulphide, the components interacting in carbon tetrachloride solution. With titanium tetrachloride, TiCl2, a brownish-red amorphous compound is formed which reacts vigorously with water and with alkalis. According to Wolbling this substance has the composition N4S4.TiCl2, but according to Davis the composition is N4S4.Ti2Cl6, reduction having taken place. Antimony pentachloride gives a stable scarlet compound, N4S4.SbCl5. Stannic chloride yields an analogous red compound, 2N4S4.SnCl2. Stannous chloride does not combine directly with nitrogen sulphide, but in warm benzene solution a yellow compound is obtained, the constitution of which has not been determined. With selenium dichloride a green compound, N4S4.SeCl2, is obtained. In the case of tungsten hexachloride the compound formed is N4S4.WCl2, reduction having taken place.

The addition of "sulphur dichloride" to nitrogen sulphide in solution also yields additive products, the following having been prepared: 3N4S4.2SCl2, N4S4.SCl2 and N4S4.2SCl2.

Nitrogen sulphide acts slowly on the acids of the paraffin series. In the case of acetic acid there is an evolution of sulphur dioxide, and sulphur and ammonium sulphate are obtained, as well as small quantities of free nitrogen. Considerable quantities of acetamide and diacetamide are also formed. The sulphide is indifferent towards primary and secondary bases of the aromatic series and towards all tertiary bases. Nitrogen sulphide has been claimed to assist the vulcanisation of rubber.

Constitution

According to Schenck, and Clever and Muthmann, nitrogen sulphide has the constitution

.

Ruff and Geisel consider that its most probable constitution is

,

their researches on the sulphur halides rendering the bivalency of all the sulphur atoms in the sulphide improbable.

The latter formula is in accordance with the behaviour of the sulphide on hydrolysis, its reaction with hydrogen chloride, and with the formulation of the metallic derivatives and . The action of acetyl chloride, which produces the compound N3S4Cl, and the recovery of nitrogen sulphide from this compound by the action of ammonia, are facts which cannot be explained by this formula.
© Copyright 2008-2012 by atomistry.com