|
Atomistry » Sulphur » Compounds » Hydrogen Polysulphides | ||||
Atomistry » Sulphur » Compounds » Hydrogen Polysulphides » |
Hydrogen Polysulphides
In 1777 Scheele observed that by the rapid addition of much acid to a solution of sulphur in an alkali it was possible to produce a yellow, pungent, oily substance. Better conditions for the preparation of this substance were first described by Berzelius in 1825, who stated that a concentrated solution of " liver of sulphur " should be added in small quantities to dilute hydrochloric acid. The oily substance, of specific gravity approx. 1.7, is very unstable and is rapidly decomposed on contact with water, although dilute acids, especially hydrochloric acid, exert a distinct preservative action. For many years the oil was regarded as hydrogen pentasulphide, H2S5. When freshly prepared it is completely soluble in cold benzene; it cannot therefore contain any considerable quantity of free sulphur, and as its composition approximates to that of a penta- sulphide, it was natural to come to the conclusion that it might be an impure hydrogen pentasulphide; now, however, the product is not- regarded as a definite compound. It varies in viscosity according to the percentage of sulphur in the original dissolved metallic polysulphide, and widely divergent views have at various times been expressed as to the formula representing its composition.
A discovery that certain alkaloids were capable of producing definite crystalline compounds with hydrogen polysulphide unfortunately failed to elucidate the mystery of the composition of the latter, since the compounds produced did not yield unanimous indications. Thus strychnine yielded a hexasulphide, (C21H22O2N2)2.H2S6, whilst brucine gave two hexasulphides, a red one, (C23H26O4N2)3.(H2S6)2, and a yellow one, (C23H26O4N2)3.H2S6.6H2O, and also an octasulphide, C23H26O4N2.H2S8.2H2O. Furthermore, apart from the fact that these additive compounds were not of one type and that their composition was at first wrongly interpreted, there was the additional disadvantage that their indications did not accord well with the earlier views concerning the formula of hydrogen polysulphide.
Preparation of Hydrogen Polysulphides
The crude hydrogen polysulphide, or " hydrogen per- sulphide "as it is frequently termed, is best prepared by heating for three hours at 100° C. a mixture of sodium sulphide, Na2S.9H2O, with half its weight of sulphur. The crystalline sulphide melts and the sulphur is gradually dissolved to a deep-red solution of which the solute has a composition between Na2S4 and Na2S5. This solution is mixed with rather less than its own bulk of water and is then introduced as a thin stream into a mixture of dilute hydrochloric acid and ice. The same yellow, oily product is obtained whatever the composition of the dissolved polysulphide, whether Na2S2, Na2S3, Na2S4 or Na2S5.
If the oil is distilled under a pressure of 2 mm. in glass apparatus of which the superficial alkali has been removed by treatment with hydrogen chloride, a distillate amounting to approximately one-sixth of the original bulk can be collected in the usual manner and on analysis proves to be hydrogen trisulphide, H2S3. At the same time a more volatile liquid, actually hydrogen disulphide, H2S2, can be condensed in a second receiver cooled by a mixture of ether and solid carbon dioxide. The crude persulphide is also formed together with a large proportion of sulphur, when sulphur dioxide either as gas or in solution is reduced by means of hypophosphorous acid. The pentasulphide, H2S5, has been isolated more recently by decomposing pure anhydrous ammonium pentasulphide with anhydrous formic acid. General Properties of Hydrogen Polysulphides
All the known hydrogen polysulphides, as well as the crude so-called hydrogen persulphide, are yellow liquids at the ordinary temperature. They are very sensitive towards alkalis, and it is therefore necessary to treat glass vessels intended for their storage (which is often possible only for a few hours) with hydrogen chloride gas. If necessary, the compounds can be dried over calcium chloride, but this also should have received previous treatment with hydrogen chloride.
The compounds burn with a blue flame, giving water and sulphur dioxide. Even at the ordinary temperature they readily decompose into hydrogen sulphide and sulphur, the measurement of the amount of hydrogen sulphide formed from a known weight of a hydrogen polysulphide, when warmed in an atmosphere of hydrogen, supplying the most convenient method of analysis. Dilute acids act as preservatives, but even traces of alkali cause rapid and vigorous decomposition. The addition of alcohols, especially amyl alcohol, also induces rapid decomposition. Sulphur dissolves in the various hydrogen polysulphides as already described; the solutions deposit crystalline sulphur when cooled or on the addition of benzene. As solutions of sulphur in hydrogen disulphide or trisulphide behave in this way, whereas the fresh crude polysulphide does not yield its excess of sulphur on similar treatment, this supplies further evidence of the existence of a higher polysulphide in the crude " persulphide." The hydrogen polysulphides are miscible with benzene, toluene, chloroform, bromoform, carbon disulphide, ether and heptane, giving relatively stable solutions, and the use of such solutions has been suggested in place of sulphur chloride for the vulcanisation of caoutchouc at the ordinary temperature. The addition of alcohol to the benzene solutions induces rapid decomposition, with formation of nacreous sulphur, which slowly undergoes conversion into ordinary sulphur. Ketones, nitrobenzene, aniline and pyridine also catalyse the decomposition. |
Last articlesZn in 9JYWZn in 9IR4 Zn in 9IR3 Zn in 9GMX Zn in 9GMW Zn in 9JEJ Zn in 9ERF Zn in 9ERE Zn in 9EGV Zn in 9EGW |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |